One-Way ANOVA Calculations: In-Class Exercise Psychology 311 Spring, 2013

- You are planning an experiment that will involve 4 equally sized groups, including 3 experimental groups and a control. Each group will contain n observations. Your expectation is that each of the 3 experimental treatments will have approximately the same effect, and that this effect will be small — roughly one-third a standard deviation improved performance over the control.
 - (a) Calculate the 4 effects $\alpha_j = \mu_j \mu$. Note that you will only be able to express them in standard deviation units. (*Hint.* At first this may seem impossible, but recall that if the effects must sum to zero, the knowledge that 3 group means all differ from the control by $\sigma/3$ allows you to define the 4th effect so that the 4 effects sum to zero.)
 - (b) Once you have the α_j values, you should immediately be able to specify the *standardized* effect values $\alpha_j^* = \alpha_j / \sigma$. What are they?
 - (c) Suppose that n = 10 per group. Recall from lecture that the F statistic for testing the null hypothesis of equal group means has a general distribution that is noncentral F with a 1 and a(n 1) degrees of freedom and a noncentrality parameter λ given by

$$\lambda = n \sum_{j=1}^{a} \alpha_j^{*2}$$

What is the value of λ in this case?

- (d) If the F test is to be conducted with $\alpha = 0.05$, what is the critical value (i.e., rejection point)? When calculating the rejection point H_0 is true and $\lambda = 0$.
- (e) What is the power of the test with the proposed value of n = 10? Use R to perform the calculation, then verify it with Gpower 3.
- (f) How large an n would you need to obtain a power of .90?

	Control	Exp1	Exp2	Exp3
1	118	107	133	134
2	121	165	154	176
3	97	121	91	171
4	86	126	63	159
5	118	87	62	118
6	45	135	164	125
7	119	83	96	100
8	92	100	129	60
9	91	144	128	163
10	72	119	105	111

2. Suppose that you run the above experiment, and obtain the data shown below.

- (a) Perform a 1-way ANOVA on the data.
- (b) Given the result, compute a 95% confidence interval on the noncentrality parameter λ . *Hint*. You can use the MBESS routine conf.limits.ncf or my noncentral distribution calculator *NDC*.
- (c) Cohen's f can be written as

$$f = \sqrt{\frac{\sum_{j=1}^{a} (\alpha_j / \sigma)^2}{a}}$$

Examine the formula for λ , and note that f can be written as a monotonic, strictly increasing function of λ . Derive a formula for converting λ to f, and use it to compute a 95% confidence interval on f.

Key to One-Way ANOVA Calculations: In-Class Exercise Psychology 311 Spring, 2013

- You are planning an experiment that will involve 4 equally sized groups, including 3 experimental groups and a control. Each group will contain n observations. Your expectation is that each of the 3 experimental treatments will have approximately the same effect, and that this effect will be small — roughly one-third a standard deviation improved performance over the control.
 - (a) Calculate the 4 effects $\alpha_j = \mu_j \mu$. Note that you will only be able to express them in standard deviation units. (*Hint*. At first this may seem impossible, but recall that if the effects must sum to zero, the knowledge that 3 group means all differ from the control by $\sigma/3$ allows you to define the 4th effect so that the 4 effects sum to zero.)

Answer. The group means can be written in terms of their relationship to each other as $0, \sigma/3, \sigma/3, \sigma/3$. To express them as effects α_j , you have to transform them by subtracting a constant so that their mean is zero. Since the current mean is $\sigma/4$, we need to subtract $\sigma/4$ from each one. The effects then become $-\sigma/4, \sigma/12, \sigma/12, \sigma/12$.

(b) Once you have the α_j values, you should immediately be able to specify the *standardized* effect values $\alpha_j^* = \alpha_j / \sigma$. What are they?

Answer. We simply divide them all by σ , obtaining -1/4, 1/12, 1/12, 1/12.

(c) Suppose that n = 10 per group. Recall from lecture that the F statistic for testing the null hypothesis of equal group means has a general distribution that is noncentral F with a - 1 and a(n - 1) degrees of freedom and a noncentrality parameter λ given by

$$\lambda = n \sum_{j=1}^{a} (\alpha_j / \sigma)^2 = n \sum_{j=1}^{a} \alpha_j^{*2}$$

What is the value of λ in this case?

Answer. The value of λ is

10(1/16 + 1/144 + 1/144 + 1/144) = 10(12/144) = 5/6 = 0.8333

(d) If the F test is to be conducted with $\alpha = 0.05$, what is the critical value (i.e., rejection point)? When calculating the rejection point H_0 is true and $\lambda = 0$.

Answer. The F statistic has 3 and 36 degrees of freedom, and the critical value is

> F.crit <- qf(.95,3,36)
> F.crit
[1] 2.866266

(e) What is the power of the test with the proposed value of n = 10? Use R to perform the calculation, then verify it with Gpower 3.

Answer. Power is the area to the right of the rejection point we determined above in a noncentral F distribution with 3 and 36 degrees of freedom and $\lambda = 0.8333$.

- > lambda <- 5/6
 > Power <- 1 pf(F.crit,3,36,lambda)
 > Power
- [1] 0.09797938

Power is a pathetic 0.098. We can duplicate those calculations in Gpower 3 as shown in the following screen. Note how we open a side menu. To keep things simple, I defined σ as 3 and chose the means to be 0,1,1,1 yielding the same standardized effects as we calculated above.

(f) How large an n would you need to obtain a power of .90?

Answer. A total sample size of 688 for the 4 groups, or an n of 172 per group, is required.

Ba G*Power 3.1.5	derived	Stangesh as 3 and	
File Edit View Tests Calculator	Help		
Central and noncentral distributions	Protocol of por	wer analyses	
critical F = 2.61793			
0.6-0.4-0.2-β			
0 2 4	6	8 10	2
Test family Statistical test			
F tests ANOVA: Fixed	effects, omnibus,	one-way	
Type of power analysis			
A priori: Compute required sample	size – given α, po	ower, and effect size	•
Input Parameters		Output Parameters	
Determine => Effect size f	0.1443376	Noncentrality parameter λ	14.3333398
α err prob	0.05	Critical F	2.6179251
Power (1-β err prob)	0.90	Numerator df	3
Number of groups	4	Denominator df	684
		Total sample size	688
		Actual power	0.9017710
L e			
		X-Y plot for a range of values	Calculate

	Control	Exp1	Exp2	Exp3
1	118	107	133	134
2	121	165	154	176
3	97	121	91	171
4	86	126	63	159
5	118	87	62	118
6	45	135	164	125
7	119	83	96	100
8	92	100	129	60
9	91	144	128	163
10	72	119	105	111

2. Suppose that you run the above experiment, and obtain the data shown below.

(a) Perform a 1-way ANOVA on the data.

Answer. Typing in the data yields a data frame with 40 rows and 2 columns. The first and last few lines are shown below with the head and tail commands.

```
> head(data)
```

```
Y
        Group
1 118 Control
2 121 Control
3 97 Control
4 86 Control
5 118 Control
6 45 Control
> tail(data)
     Y Group
35 118 Exp3
36 125
       Exp3
37 100 Exp3
38 60
       Exp3
       Exp3
39 163
40 111 Exp3
```

To analyze the data, one standard ANOVA approach is as follows.

> results <- anova(lm(Y ~ factor(Group)))
> xtable(results)

Note that, in the above code, I use the function **xtable** to produce typeset tables within $\text{LAT}_{\text{E}}X$. The standard R output shown below would be produced simply by typing results.

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	$\Pr(>F)$
factor(Group)	3	6632.80	2210.93	2.31	0.0927
Residuals	36	34457.60	957.16		

> results

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F) factor(Group) 3 6633 2210.93 2.3099 0.09274 . Residuals 36 34458 957.16 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(b) Given the result, compute a 95% confidence interval on the noncentrality parameter λ . *Hint*. You can use the MBESS routine conf.limits.ncf or my noncentral distribution calculator *NDC*.

Answer. Here is MBESS output

```
> library(MBESS)
> lambda.ci <- conf.limits.ncf(F.value = 2.3099, df.1 = 3, df.2 = 36)
> lambda.ci
$Lower.Limit
[1] NA
$Prob.Less.Lower
[1] NA
$Upper.Limit
[1] 19.17194
$Prob.Greater.Upper
[1] 0.025
Note that it returns a missing value code NA for the lower value. Since
the lower limit cannot be lower than zero, I chose in my routine to
return a value of zero.
```

Here is the NDC screen.

(c) Cohen's f can be written as

$$f = \sqrt{\frac{\sum_{j=1}^{a} (\alpha_j / \sigma)^2}{a}}$$

Examine the formula for λ , and note that f can be written as a monotonic, strictly increasing function of λ . Derive a formula for converting λ to f, and use it to compute a 95% confidence interval on f.

Answer. We can write

$$f = \sqrt{\frac{\lambda}{na}}$$

> n <- 10; a <- 4
> upper <- sqrt(lambda.ci\$Upper.Limit/(n*a))
> upper

[1] 0.6923138

So our confidence interval for f has limits of 0 and 0.6923.